JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

III Year – II Semester		L	Т	Р	С
		3	0	0	3

MACHINE LEARNING

Course Objectives:

- Identify problems that are amenable to solution by ANN methods, and which ML methods may be suited to solving a given problem.
- Formalize a given problem in the language/framework of different ANN methods (e.g., as a search problem, as a constraint satisfaction problem, as a planning problem, as a Markov decision process, etc).

Course Outcomes: After the completion of the course, student will be able to

- Explain the fundamental usage of the concept Machine Learning system
- Demonstrate on various regression Technique
- Analyze the Ensemble Learning Methods
- Illustrate the Clustering Techniques and Dimensionality Reduction Models in Machine Learning.
- Discuss the Neural Network Models and Fundamentals concepts of Deep Learning

Unit I:

Introduction- Artificial Intelligence, Machine Learning, Deep learning, Types of Machine Learning Systems, Main Challenges of Machine Learning.

Statistical Learning: Introduction, Supervised and Unsupervised Learning, Training and Test Loss, Tradeoffs in Statistical Learning, Estimating Risk Statistics, Sampling distribution of an estimator, Empirical Risk Minimization.

Unit II:

Supervised Learning(Regression/Classification):Basic Methods: Distance based Methods, Nearest Neighbours, Decision Trees, Naive Bayes, Linear Models: Linear Regression, Logistic Regression, Generalized Linear Models, Support Vector Machines, Binary Classification: Multiclass/Structured outputs, MNIST, Ranking.

Unit III:

Ensemble Learning and Random Forests: Introduction, Voting Classifiers, Bagging and Pasting, Random Forests, Boosting, Stacking.

Support Vector Machine: Linear SVM Classification, Nonlinear SVM Classification SVM Regression, Naïve Bayes Classifiers.

Unit IV:

Unsupervised Learning Techniques: Clustering, K-Means, Limits of K-Means, Using Clustering for Image Segmentation, Using Clustering for Preprocessing, Using Clustering for Semi-Supervised Learning, DBSCAN, Gaussian Mixtures.

Dimensionality Reduction: The Curse of Dimensionality, Main Approaches for Dimensionality Reduction, PCA, Using Scikit-Learn, Randomized PCA, Kernel PCA.

Unit V:

Neural Networks and Deep Learning: Introduction to Artificial Neural Networks with Keras, Implementing MLPs with Keras, Installing TensorFlow 2, Loading and Preprocessing Data with TensorFlow.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

Text Books:

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly Publications, 2019
- Data Science and Machine Learning Mathematical and Statistical Methods, Dirk P. Kroese, Zdravko I. Botev, Thomas Taimre, Radislav Vaisman, 25th November 2020

Reference Books:

1. Machine Learning Probabilistic Approach, Kevin P. Murphy, MIT Press, 2012.